Tag Archives: wonders

Jupiter Conjunction with the Moon 21st January 2013

Jupiter this afternoon is moving in for the closest line-of-sight conjunction with the moon you’ll see until the year 2026.

Moon with Jupiter in daylight. 15.30 (PST) from Los Angeles. © Tim Jones
Moon with Jupiter in daylight. 15.30 (PST) from Los Angeles. © Tim Jones

Jupiter is very bright and easily viewable in the daytime – especially with binoculars; the problem is you can never find it.   Because it’s so close to the moon today, that’s no problem: find the moon and you’ve found Jupiter.  This is my first pic of the day.  I’ll update with new ones every few hours as Jupiter moves in to closest approach and the Jovian satellites start to appear.   I have only a reasonable telephoto with me, not a telescope, but we’ll see how it goes.

Get out there now with those binocs!

Moon with Jupiter in Daylight 16:30 (PST) Los Angeles ©Tim Jones
Moon with Jupiter in Daylight 16:30 (PST), 21.01.2013, Los Angeles ©Tim Jones
Moon with Jupiter 17:00 (PST) Los Angeles
Moon with Jupiter 17:00 (PST), 21.01.2013, Los Angeles ©Tim Jones
IMG_0499_2
Jupiter and Moon, 17:25 (PST) Los Angeles, ©Tim Jones
Jupiter and Moon, 17:45 (PST) Los Angeles. ©Tim Jones
Jupiter and Moon, 17:45 (PST) Los Angeles. ©Tim Jones
Jupiter and Moon, 17:55 (PST), 21.01.2013, Los Angeles. ©Tim Jones
Jupiter and Moon, 17:55 (PST), Los Angeles. ©Tim Jones
Jupiter & Jovian Moons, 17:55 (PST) ©Tim Jones
Jupiter & Jovian Moons, 17:55 (PST), 21.01.2013, Los Angeles, ©Tim Jones
Jupiter and Moon, 18:41 (PST) Los Angeles. ©Tim Jones
Jupiter and Moon, 18:41 (PST), 21.01.2013, Los Angeles. ©Tim Jones
Moon and Jupiter, 18:45, 21.01.2013, Los Angeles ©Tim Jones
Moon and Jupiter, 18:45, 21.01.2013, Los Angeles ©Tim Jones
Moon, Jupiter, Hyades & Pleiades clusters 18:49 (PST), 21.01.2013, Los Angeles. ©Tim Jones
Moon, Jupiter, Hyades & Pleiades clusters 18:49 (PST) Los Angeles. ©Tim Jones
You don't need the Hubble Space Telescope to have fun with the sky...
You don’t need the Hubble Space Telescope to have fun with the sky…
Moon and Jupiter, 19:21 (PST), Los Angeles. ©Tim Jones
Moon and Jupiter, 19:21 (PST), Los Angeles. ©Tim Jones
Position of Jovian moons 19:45 (PST) Starry Night software
Position of Jovian moons 19:45 (PST) Starry Night software (note: this just to show moon positions; the image of Jupiter here is from the software; my kit isn’t that good).
Jupiter and Moon, with the fairy-lights on and Orion rising. What more could you want?
Jupiter and Moon, with the fairy-lights on and Orion rising. What more could you want?

That’s about as close as it will get: 30 minutes of arc, or a Moon’s diameter.  Some folks in the Southern Hemisphere will see Jupiter completely disappear behind the moon – an occultation.  But that’s me done for the evening.  Happy stargazing!

Armchair Astrophotography

It’s a good few years since I took a photograph through a telescope, so I thought I’d share my latest pics.

Moon. ETX-90 prime focus, Canon 7D
Moon. ETX-90 prime focus, Canon 7D

The moon’s been presenting itself as a nice late evening target in our Westerly outlook this week, so that’s where I’m starting. These two are the best of the bunch from the last couple of nights (click for bigger pictures):

Moon, ETX-90, Canon 7D eyepiece projection (12.5mm ortho)

And in this video clip taken by eyepiece projection, there’s quite a bit of detail visible in the Mare Criseum (Sea-of-Crises) at top left:

[quicktime]https://communicatescience.com/zoonomian/wp-content/uploads/2011/04/Moon_astro_7_4_11_eyepieceprojection2.m4v[/quicktime]

This longer clip shows a complete traverse of the moon across the field of view (no tracking):

[quicktime]https://communicatescience.com/zoonomian/wp-content/uploads/2011/04/Moon_astro_7_4_11.m4v[/quicktime]

I’m particularly pleased with how the videos came out, capturing the fleeting moments of still air you need to look out for when observing live by eye.

The rig is built around an ultra-compact Meade ETX-90 telescope, picked up when I moved to London 10 years ago as a more suitable replacement for my 6 inch reflector.  All I’ve added is a connecting tube and T-mount to get the camera hitched up.

ETX-90 set up for astrophotographyETX-90 set up for astrophotography

My six inch reflector of yesteryear

Strictly speaking, you don’t need a telescope for astrophotography.  Here’s the Plough (Big Dipper) taken with a tripod-mounted standard lens:

Plough (Big Dipper) with standard lens

And these shots of an Earthlit  Moon and Venus are two of my favourites:

Moon and VenusMoon with EarthlightI’ve also had some luck in the middle ground using telephoto lenses, where the results have been surprisingly good: like these pics of a lunar eclipse, the International Space Station (ISS), and Jupiter with its moons; all taken with a 400mm lens – in the case of the ISS, hand-held:

Lunar Eclipse, 400mm lens, Canon 7D
International Space Station (ISS) and Jupiter
ISS with Jupiter through 400mm telephoto and digitally zoomed

International Space Station

 

 

18 megapixels of digital zoom  helps resolve the ISS into something other than an unrecognisable blob.

Jupiter with moons, 400mm lens on Canon 7D
Jupiter with moons, 400mm lens on Canon 7D
Jupiter with moons, 400mm lens on Canon 7D
Jupiter. Taken holding camera to lens of a spotting (birding) scope.
Jupiter. Taken holding camera to lens of a spotting (birding) scope.

But to resolve surface detail in objects like Jupiter, a true  astronomical telescope is called for.

Moon taken with smartphone through ETX-90
Smartphone held to eyepiece

I started by simply holding my smartphone to the eyepiece. Not a disaster, but I lost fine detail and the moon took on a weird pinkish bloom.

logitech webcam with lens removed
Webcam attached to telescope
Logitech webcam with lens removed
Webcam CCDs are very small

Attaching a digital SLR directly to the telescope gave better results, with the camera’s CCD (Charge Coupled Device) sensor at the prime focus.  I also experimented with an old Logitech webcam with the lens removed, but the background noise was too high and the small sensor size made for a very narrow field of view.

 

The Canon 7D gives a much nicer image, and can be operated totally remotely via the computer. Live images are fed to the laptop screen for easy focus and exposure control.

With the still pictures, I want to get to grips with the various image processing techniques for stacking multiple images.

Of course, none of this competes with the Hubble Space Telescope, but amateur astrophotography for me is  more about the satisfaction of seeing what a particular instrument can do, and learning along the way more about the various objects I’m photographing.

After the moon, my next target is Saturn, with the goal of resolving the Cassini division in the rings; and Jupiter, where I’ll be happy if I can resolve the Great Red Spot.

I’m also planning to take some guided wide-field photos of deep sky objects like the Orion Nebula.  But that requires dark skys and the telescope’s drives being sufficiently accurate and strong enough to support a ‘piggy-backed’ camera and lens.  All for another day.

The immediate issue, as the videos show, is just how bad the ‘seeing’ can be when observing at dusk from a building that’s been baking in the sun all day.  I need to find more open skys.

But for now, with the telescope’s motors whirring away on the balcony, I literally am the armchair astrophotographer.

 

Life, Talk To Me About Life

Search for Life at the Royal Institution
Search for Life at the Royal Institution (Photo Tim Jones)

I kind of expect to see demonstrations at the Royal Institution, an association with the Christmas Lectures I guess.

So it was nice to see a few props at Lewis Dartnell’s talk on astro-biology yesterday evening:  a Geiger counter, a jar of fluorescent quinine, a piece of Mars.   A piece of Mars !!! That got a reaction from the audience – along with an intelligent question – “how do you know it’s from Mars?”  As it happens, matching isotopes between the 1911 meteorite sample and material tested in-situ by the Viking lander on Mars leave little doubt about its origins.  Whether it contains signs of former Martian life, as some claim, is another matter.

Lewis Dartnell & Naomi Temple (Royal Institution) with the famous RI bench.  Photo: Tim Jones
Lewis Dartnell & Naomi Temple (Royal Institution) with the famous RI bench. (Photo Tim Jones)

The evening’s bottom line was that no extra-terrestrial life has yet been found; but there is particular hope for Mars and/or Jupiter’s moon Europa.

Dartnell structured his lecture from the Earth outwards: Earth, solar system, galaxy, etc.   With ‘Earth’ came a definition of life, and what an excuse that was to show some clips from this amazing Harvard Biovisions simulation of how a cell works; fast forward to 4:00mins for the best bit with vesicles being dragged along by ‘motor proteins’.

Moving out from the Earth, we find that the combination of salinity, pH, and temperature on which earth’s more ‘extremophile’ lifeforms thrive: thermophiles, acidophiles, psycrophiles in the lingo, are the exact same as those prevailing on Venus, Mars, and Jupiter’s moons.  Further out in the galaxy, there are candidate stars with Jupiter-sized planets at the right sort of solar distance for Earth-like temperature conditions to exist at their supposed moons (HD28185 and Gliese581 were the examples given).  So there’s hope.  Information, metabolism, blueprint  = Life.

Dartnell could see Martian material being brought back to earth for analysis at some point, but not for another ten years or so.  In the meantime, the European ExoMars probe, due for launch in 2011, will drive around the surface, drilling holes and taking samples.  It will also illuminate the landscape with ultraviolet light, organic molecules betraying themselves with their fluorescence.

No discussion on extra-terrestrial life is complete without some sort of Saganish ‘Billions’ illustration of how many stars – and presumably planets – there are in the universe: the implication being that we have a large sample size even if the odds are thin (which they aren’t necessarily).   Lewis Dartnell showed it last night.  Astronomer Stephen Warren showed it at his inaugural lecture at Imperial College tonight.  This is the now iconic Hubble deep field image showing a section of sky equivalent to only 1/30th the moon’s diameter (Warren reckoned a 1mm square at the end of your arm – sounds about right).  And most of the objects  here are galaxies.

Hubble Deep Field
Hubble Deep Field

The insufficiently humbled can check out higher resolution versions at Hubblesite.org.

“Space is big. Really big. You just won’t believe how vastly hugely mind-bogglingly big it is. I mean, you may think it’s a long way down the road to the chemist, but that’s just peanuts to space.”

“Life, don’t talk to me about life….”

🙂

Postscript

As a quick aside.  Before Lewis Dartnell kicked off, the organisers called for a show of hands of any first time visitors to the Royal Institution, and that turned out to be a fair chunk of audience; less than 50% I reckon, but a good number.  With my SciCom hat on, that’s really encouraging – folk taking an interest in science and technology (and they didn’t look like the UFO squad either).