I took this short sequence in the garden this afternoon. No photo-shopping, just a nice illustration of the splitting of sunlight into it’s component colors by refraction through a water drop – shuddering in the breeze after a storm.
The simplest of things, it put me in mind of John Keats’s supposed lament that Isaac Newton had destroyed the beauty of the rainbow by explaining the science behind it, the underlying sentiment of which he included in the poem Lamia. I say supposed, because I can’t find a primary reference to Keats actually ‘having a go’ at Newton over his prism or whatever. Lamia however speaks for itself (see below).
Richard Dawkins gives an alternative view in his book, Unweaving the Rainbow, where he argues scientific understanding enhances rather than diminishes beauty. I’m with Dawkins on this one. And while those going through life without a scientific education (for whatever reason) experience it in a way that is different, I believe they are also simply missing out.
Keats’s rainbow reference appears in his poem Lamia Part II:
What wreath for Lamia? What for Lycius? What for the sage, old Apollonius? Upon her aching forehead be there hung The leaves of willow and of adder’s tongue; And for the youth, quick, let us strip for him The thyrsus, that his watching eyes may swim Into forgetfulness; and, for the sage, Let spear-grass and the spiteful thistle wage War on his temples. Do not all charms fly At the mere touch of cold philosophy? There was an awful rainbow once in heaven: We know her woof, her texture; she is given In the dull catalogue of common things. Philosophy will clip an Angel’s wings, Conquer all mysteries by rule and line, Empty the haunted air, and gnomed mine— Unweave a rainbow, as it erewhile made The tender-person’d Lamia melt into a shade.
In June last year, Conservation Today ran a one day public conference – The Open Ground – to raise awareness of issues around biodiversity. The event aimed to provoke discussion by combining a range of scientific and artistic perspectives.
The conference write-up by my colleague and fellow science communicator Emma Quilligan has is at Nature Network. Here I present the audio from the event, endorsed by the organiser Will Pearse, for those unable to join on the day.
As Emma says, The Open Ground itself is something of an exercise in diversity. As such, the panelists range from academic to activist, and include well known public faces such as the scientist and TV presenter Armand Leroi, and the prize-winning poet and Charles Darwin descendant Ruth Padel.
The proceedings are split into three sessions, each comprising three speaker presentations followed by a panel discussion with audience Q&A. Without the speakers’ slides, some of the audio isn’t going to make sense; but for the most part it does, and much of the most interesting discussion comes in the panel sessions.
In conclusion, all the participants are speaking for themselves, and the views and opinions expressed don’t necessarily represent my own take on things. That said, if anyone wants to strike up a comment thread on any of the content, feel free.
Introduction by Will Pearse (Conservation Today)
Session 1 – The Necessities of Conservation
Dr Sam Turvey, Dr Emily Nicholson and Caspar Henderson on the challenges conservationists face.
Presentations – Session 1
Panel Discussion – Session 1
Session 2 – Biodiversity and the Imagination
Prof. Ruth Padel, Dr Jamie Lorimer, and Melanie Challenger look at biodiversity from the perspective of literature, culture and society.
Presentations – Session 2
Panel Discussion – Session 2
Session 3 – Biodiversity Futures
Prof. Armand Leroi, Prof. John Fa, and Steve Roest on topics ranging from the trade in bushmeat to depletion of the oceans.
Just a short note to share with you one of the many wonders I stumbled upon at the British Museum yesterday. This is an Inuit Lance Head, displayed in the Enlightenment Gallery (in the King’s Library). It was collected in Greenland in 1811 by John Ross while searching for the North West Passage.
What’s significant about this is the metal tip, which is formed not from man-made iron or steel, but from meteorite material that dropped from the sky. The whole story is here in more detail at the British Museum website.
I hadn’t thought about this rather obvious application, so the piece was doubly impressive and, while the lance tip is relatively young, much earlier examples have been found around the world that pre-date iron-making technology. The rarity of the source ensured knives and other objects fashioned from meteorites carried special value and were likely reserved for ceremonial use.
If you fancy one of these, the modern equivalent is still being made today.
Update 15th March – I’ve posted the top 50 winning messages HERE.
Update 13th March – Competition results. For those of you checking back for the 12th March winning messages, they don’t seem to have appeared yet. Another eerie silence if you like. Watch this space.
You might remember one of the speakers at the Royal Society event was physicist Paul Davies, who also has a new book coming out, The Eerie Silence: Are we alone in the Universe?.
I’ll be writing a full review of Eerie Silence in due course, but meantime you might want to take part in what looks like a fun competition, launched today by publishers Penguin UK together with National Science and Engineering Week.
They’re asking the question:
Is there anybody out there? What would you say if you could send a message into space?
Would you say hello, ask the meaning of life, share an insight or just complain about the weather?
As the organisers say, this is a rare opportunity to beam up to 5000 messages into space to celebrate the 50th anniversary of SETI, the Search for Extra Terrestrial Intelligence, which is the subject of Davies’s book.
So get your thinking cap on, make your message funny, thoughtful or wise and do something extraordinary.
The best 50 messages, as chosen by a judging committee, will be posted at the Penguin websiteand also here on Zoonomianon 12 March, the first day of National Science and Engineering Week 2010 and in the national media. Winning entrants’ names and home location, only, may be credited at the foot of each message. In addition, the 50 winning entrants will each receive a copy of “The Eerie Silence: Are we Alone in the Universe?” by Paul Davies.
In this piece for the Washington Post, movie director James Cameron gives his analysis of the NASA budget, reminds us of the inspirational importance of space exploration and, that when it comes to winning popular support for space, “rockets really do run on dreams”.
The inspirational power of space and rocket ships is nothing new, and we can learn from history in properly valuing the less tangible motivating, emotional, and cultural impacts of future programs.
In the 1950s and 60s – a ‘Golden Age of American Science ‘ – folk thrilled at the prospect of great wheel-shaped space stations in orbit, and conquering the cosmos through atomic power. Sputnik energised the US rocket program that led to Apollo and the space shuttle. And the space station has arrived – even if it does fall short of Clarke and Kubrick’s vision for ‘2001’.
Perhaps blinded by the blistering activity that characterised the period leading up to Apollo, it’s easy to forget that rocket ship vocabularly was a part of the popular psyche long before the space race of the cold war years.
Buck Rogers first appeared in the magazine Amazing Stories in 1928, and as a newspaper comic strip in 1929.
The outer space exploits of Buck and his futuristic companion Wilma captivated and fired the scientific and technological imagination of a generation of young people. Some became the scientists and engineers of the Golden Age, and some, like my father-in-law, who as a schoolboy in 1940s Glendale made the copper artwork above, found themselves working at an embryonic NASA.
As promised, here is science communicator Jonathan Chase’s impromptu Astrobiology Rap performed at last week’s Royal Society discussion meeting on ‘The detection of extra-terrestrial life and the consequences for science and society‘. (Write-up of the event is here).
“Ladies and gentlemen, I have a grave announcement to make. Incredible as it may seem, both the observations of science and the evidence of our eyes lead to the inescapable assumption that those strange beings who landed in the Jersey farmlands tonight are the vanguard of an invading army from the planet Mars.”
Those words were spoken by a fictitious news reporter in Orsen Welles’s 1938 radio play ‘The War of the Worlds’ – a broadcast that probably did more than any other event in the 20th century to embed the prospect of extra-terrestrial life in the popular imagination.
Listeners to Welles’s play are said to have run screaming into the streets, taking the Martian invasion for real. Yet that reaction, said Professor Albert Harrison from the University of California, Davis, has been overplayed and, in fact, many listeners followed much more rational courses of action. Harrison’s comments are consistent with the Royal Society’s intent that this meeting explore beyond the bounds of natural science – to consider the social, cultural, and political impacts of the search and possible discovery of extra-terrestrial life.
It’s tricky to focus down 16 speakers and 14 hours of discussions, but for me everything feeds into three questions:
Is there life beyond the earth?
Is there intelligent life beyond the earth?
How might human beings react to the discovery of extra-terrestrial life?
(o.k., there’s also a significant ‘sub-plot’ around the possibility that life evolved on earth in several independent forms – more of which later.)
Echoing an early speaker, I’ll say up front that there is presently no evidence for the existence of extra-terrestrial life, intelligent or otherwise. But that doesn’t mean it isn’t out there. Sorry if that ruined the sense of chair-gripping suspense I’ve been building.
Is there life beyond the earth?
Where life?
Strangely perhaps, the search for ET begins on Earth, in so far as understanding how terrestrial life came to exist and evolve tells us what to expect elsewhere.
But beyond the Earth, researchers are looking in two places :
(a) planets in our own solar system
(b) planets in orbit around other stars in our galaxy
Why life?
With evidence that physics and chemistry are uniform across the universe, the argument is that if we find life in one location, then why not in another. It’s quite convincing if said quickly.
But conscious human life appears only at the end of a road full of hurdles, and we really need to understand how challenging each stage of the process is before raising expectations of a repeat performance. When Pascale Ehrenfreund described the ubiquity of carbonaceous compounds in the universe, she did so against a history starting at the big bang, moving through the formation of chemical compounds, then on to DNA, and finally to life. The sequence goes something like:
1. The universe came into existence at the Big Bang (including time and space, energy and matter)
2. Matter condensed into galaxies of gas and stars, and elements and chemicals were produced
3. Chemicals became arranged so they were able to self-replicate and behave as ‘life’ (RNA>DNA>cell formation, or alternative chemical arrangements that fulfill the same function)
4. Simple life evolved into more complex forms through Darwinian natural selection
5. Complex life forms evolved intelligence
6. Intelligent life forms became self-aware (consciousness)
My critique of these is that (2) and (4) are uncontroversial: we directly observe elements and chemicals, including organic molecules in deep space; and stage (4) is simply the fact of Darwinian evolution. (5) – intelligence – could be considered an extension of evolution; but, for me, (6) – consciousness – is a separate deal. That’s not because I think consciousness requires supernatural intervention to make it happen, but more to highlight how little understood is the process by which matter gets to understand and act upon itself. If we’re so smart, where’s the AI – right?
Jumping back to (1) – the big bang – as the mechanism for the formation of our universe in isolation, that too is uncontroversial for many scientists. Yet, speculative concepts like the multiverse have bearing on discussions about the probability of life forming. This meeting avoided getting too far side-tracked into cosmological fundamentals and the more adventurous areas of scientific speculation. Indeed, I thought Paul Davies, author of the The Mind of God and The Goldilocks Enigma – works that major in this territory – showed great restraint.
On what life actually is, I found it hard to pin down a universally shared definition, but most include the ability to self-replicate and to behave autonomously. Other qualifying features might include complexity, the ability to grow and develop, and the presence of a nutrient-fed metabolism. I also liked Baruch Blumberg’s reference to a test that involves comparing the behaviour of live and dead chickens thrown into the air.
Astrobiology in a new Age of Wonder
For Blumberg, astrobiology and the search for ET represents a new Age of Wonder – driven by the Joseph Banks spirit found in Richard Holmes’s book of the same name, but enhanced through startling advances in technology. Astrobiologists are asking themselves if the commonality of biologies discovered across the globe in Banks’s time will now be reproduced at the universal scale.
The planets in our own solar system can be reached by physical probes, but so-called exoplanets orbiting distant stars (but still in our galaxy) must be detected and analysed remotely with instruments like the Kepler space telescope. This is an area where progress
has been extremely rapid and rewarding since the first Jupiter type gas giant planets were discovered 15 years ago. Researchers already analysing ‘super earths’ (x10 earth mass), said Michel Mayor, were on the brink of accessing planets equivalent in size and position to Earth. Still unresolvable as discs, exoplanets are detected from the way they change the apparent brightness and quality of light from the star-planet system. When a planet passes in front, it blocks out some light, and the reduction is measured by what is effectively a giant light-meter – like Kepler. Some new instruments in the pipeline, such as Plato scheduled for 2018, will open up more than half the sky for exoplanet analysis, further increasing the chances of discovering life.
But the little things can impress most, and one of the highlights for me was Malcolm Fridlund’s slide showing a very subtle dip in a star’s brightness curve, corresponding not to a reduction due to shadowing, but to the loss of reflected light from the planet itself as it passed behind the star. That somehow brought home the sensitivity of the technique.
Analysing the wavelength of light from these systems reveals chemicals in the exoplanet’s atmosphere that we can compare with chemicals that are associated with life in our own biosphere (or biofilm as Cockell would have it). For example, ozone, oxygen, methane, and water may indicate plant life. And as Pascale Ehrenfreund explained, the starting materials for carbon based life are common throughout the universe: including long carbon chains, fullerenes and PAHs (polycyclic aromatic hydrocarbons).
While there’s been a push to see earth sized planets – because we know they work I guess – larger planets are not ruled out, although it was suggested plate tectonics might limit development on larger rocky worlds. We know life can be surprisingly tough though, like the Earth-bound extremophile group chemolithotrophs, described by Charles Cockell, that can survive high temperatures, pressures, and strong saline solutions – extracting energy directly from rocks by oxidising iron.
So it was a little disappointing after all that to learn from Simon Conway Morris that conditions on Jupiter’s moon Europa may be too saline for life. Maybe I’ve watched the movie 2010 too often, but I had Europa pegged as a top contender (according to Chris McKay, Saturn’s largest moon Enceladus is now a more likely prospect).
But Morris’s main aim was to demonstrate the ubiquity of evolutionary convergence, with reference to basic life forms that had shown a tendency to independently converge on improved or even optimal designs through natural selection. This begs the question why, if life once started has little problem developing and converging across a range of environments, is the universe not teaming with life and its tell-tale transmissions (an example of the Fermi Paradox discussed later). Simon Conway Morris’s explanation is that basic life is indeed a (one off?) fluke.
Chris McKay’s ‘Second Genesis’ went some way to soften the prospect of life as a total fluke, his thesis being that we might find an independently developed tree of life in our own solar system. Just finding life or its artifacts in the rocks of, say, Mars won’t do though, as we know there’s been a historic transfer of rocks (below sterilisation temperatures) between the Earth and Mars caused by ejection of material by asteroid strikes.
Indeed – we may ourselves be Martians ! (A number of Martian meteorites have been found on earth, identified by analysing the composition of trapped gas bubbles and comparing it to samples analysed on Mars. A meteorite was found on Mars by Viking, but not from Earth – although such material is almost certainly there.)
Rather, life derived from a true second genesis would have to demonstrate features in its underlying structure, or building blocks, that must have arisen independently from our own tree of life, and will certainly not be part of it.
Is there intelligent life beyond the earth?
The second day’s discussions, chaired by Jocelyn Bell-Burnell and Martin Rees, focused on the search for intelligent extra-terrestrial life, or SETI, and how human beings might react to its discovery.
Maybe it’s a little unfair to suggest anyone working in this field is an inherent optimist, but I suspect such a condition is helpful.
At the start of this post, I listed the various stages or hurdles that must be jumped on the way to life. But for Christian de Duve, opening the session, the appearance of life on Earth is simply the inevitable outcome of a chemical process; such that if the same chemistry occurs elsewhere – the same sort of life will appear.
De Duve’s thesis of life as a cosmic imperative does rely on the same physical as well as chemical conditions being reproduced, but for me he didn’t adequately address the qualitative difference between the reaction of a homogenous mix of chemicals, and more complex processes such as the formation of self-reproducing entities like cells (via RNA and DNA). Assumptions around the inevitability of the switch from chemistry to ‘life chemistry’ are troubling. But maybe I just need to read De Duve’s book.
The Shadow Biosphere
Following Chris McKay’s discussion around a ‘Second Genesis’ in our solar system, Paul Davies followed similar motives with his concept of a more Earthbound ‘Shadow Biosphere’. Davies’s research, described in his forthcoming book, The Eerie Silence, may be terrestrial, but can inform the off-world search. The Shadow Biosphere, if it exists says Davies, will comprise unconventional (and unrecognised) life forms that have appeared and developed independently.
The lifeforms may have died out and be detectable only via ancient biomarkers, or they could be “under our noses” in the form of the largely overlooked extremophiles – those bugs that thrive variously in hot, high-pressure, salty and radiated environments. Davies described ongoing research at the hot pools of Mono Lake, California, where the search is on for arsensic-based micro-organisms, where arsenic may have replaced the phosphorous found in the tree of life we already know. Shadow organisms can thus look quite ordinary (whatever that means for an extremophile) but betray themselves by subtle but fundamental differences in their basic composition – such as inclusion of arsenic, or structure – such as the ‘handedness’ of their DNA. As with Second Genesis, the work has obvious implications for our view on the specialness of life-forming processes.
And while fishing around in hot pools might lack the superficial glamour of exoplanet and space research, the results could be of equal or greater significance. Also, with potential Martian finds arguably compromised by the possibility of inter-planetary material exchanges, the discovery of alternative trees of life on Earth might provide a more robust argument for the prevalence of life in the greater universe.
Is there anybody…..out there!
The attraction of SETI, officially celebrating its 50th anniversary this year, speaks for itself. Discovering the extra-terrestrial lettuce would be nice, but we’d all rather have the salad recipe beamed in from Vega.
Director of the Carl Sagan Center for the Study of Life in the Universe, Frank Drake, has been on the case from the start, and with Director of the Center for SETI Research, Jill Tarter, has been listening for radio, and more recently laser, broadcasts since the 1960s.
To help understand what he was up against odds-wise in the search, Drake proposed his now famous equation to calculate the number of civilisations in our galaxy with which communication might be possible:
Scaled up calculations suggest there are likely to be ten to the power 20 Earth-like planets in the observable universe, suggesting that if the road to intelligent life is ubiquitous and mechanical (which is not a given), the outlook for detection looks positive.
However, the Fermi Paradox, based on an observation by Enrico Fermi that we don’t see any evidence of life, because it either isn’t there or habitually destroys itself, runs counter to this enthusiasm. And as Paul Davies commented, the odds represented in the Drake equation terms (for and against life) stack up exponentially. Bottom line, I think these sorts of consideration should cause us to revisit any intuitive sense we might have for the inevitability of life – especially those of us from the Sagan “billions” generation.
Apart from radio waves and laser beams, aliens might give themselves away in other ways associated with their use of advanced technologies. One such technology is the Dyson Sphere. Proposed by Freeman Dyson, the sphere would be built by advanced civilisations to completely encapsulate their star, and thereby capture or control its energy more efficiently. Such spheres would glow in the infra-red, and serious Earth-based studies have been made to look for them. I’ve previously referenced science fiction author Stephen Baxter’s use of the Dyson Sphere in his novel Time Ships (in this blog post).
Understandably perhaps, the SETI camp don’t appear to dwell on factors that might dampen enthusiasm for the cause. For example, it was pointed out that the intensity of our own incidental and accidental radio emissions into space has decreased over the years with improved efficiency and new modes of non-radiative information transfer – like fibre optics. So maybe the aliens don’t glow as brightly as we’d like. Also, any laser communications we might detect would necessarily have to be altruistically targeted by the senders with the specific purpose of communicating with alien life. Maybe they’re doing that. It’s not that I’m being negative on any of this, but rather that, all in all, I walked away from this session as unsure as I was when when it started as to how much of a long shot SETI really is.
How might human beings react to the discovery of extra-terrestrial life?
References to the likely social, cultural and political impacts of the discovery of, or contact with, extra-terrestrial life were variously touched upon by earlier speakers. In this session, I hoped we’d come to some sort of focus, and discuss scenario-based questions such as: “What would happen if Hitler’s 1936 Olympics speech was broadcast back at us?” – as happened in the film Contact. That didn’t happen, with anthropologist Kathryn Denning seeming to actively discourage the consideration of specific scenarios. I took the point that we can’t fully prepare, but still found the approach over-conservative. Anyhow, we were told there are several groups now looking into ‘post-detection issues’, and I look forward to seeing their findings.
Albert Harrison’s aforementioned analysis of Orson Welles’s War of The Worlds broadcast was entertaining, and made me realise the importance of that event as a social experiment – however unintended (how many points do we have on this particular graph?). On a related topic, I was surprised at the level of disagreement amongst the academics on the question of whether aliens would be benevolent or malevolent.
Ted Peters presented research results on how various religious groups and atheists thought a discovery of ET would impact them personally and their ( if appropriate) religious creed.
I’m oversimplifying, but in summary: theists generally felt they could individually accommodate ET, but their orthodoxy less so; those from more deist or spiritual religions – like Buddism (which I hardly consider a religion in the same vein as the others) had few if any problems – personally or as a group. In general, it seemed to be ‘the other guy’ and his religion that would have the problem, not the person asked. Ho hum…
Interestingly, the atheists felt religious people would have more of a problem than the religious themselves reported, and related to that in questions, Paul Davies suggested the results were more suggestive of religious people not knowing enough about their own religion.
The event wound up with presentations from Hungarian Academy of Science speaker Ivan Almar, and Marian Othman from the UN Office for Outer Space Affairs. Almar’s subject matter – scales – was for me a little dry and mechanical for a closing session, but prompted a lively Q&A around issues such as the representation of high-impact/low-probability events, and the use and mis-use of scale data by different groups (e.g. experts, the media).
Othman’s presentation was more of an insight into the workings of the UN committee structure, illustrated through its handling of the topic of Near Earth Objects. Her sharing of the various procedures, political considerations, and protocols provided something of a pro-forma for dealing with issues of extra-terrestrial life.
All in all, the session was notable for the way audience delegates, the critical mass of which I suspect hailed from the more natural scientist end of the spectrum (physicists, astrobiologists), engaged in discussions that necessarily fringed on speculation. Scientists rightly don’t like to speak on topics where they lack either expertise, complete data, or both of those; but the judicial placement of appropriate disclaimers led to a lively debate.
I’d like to end this post with a noble declaration to the effect that the real take-away from the meeting was that the search for ET is as much about the search for an understanding of ourselves as anything else. And while I think that’s probably true, the real thrill for me was to spend two days mixing it with a bunch of bright folk who, in these days of market focused short-termism, are still able to pursue such a worthy vision. I had great fun.
EXTRAS!
1. Listen to Jonathan Chase and his Astrobiology Rap !
2. Hear the Mercury Theatres’s War of the Worlds radio play here.
3. Hear my interview with astrobiologist Lewis Dartnell here (in spite of the background noise, I think this is a great interview):
I’ve just discovered the University of California Santa Cruz’s website Dreambank.net; a fascinating repository of dreams that’s also a research tool.
Developed by Adam Schneider and William Domhoff in the Psychology Department, the tool’s content of over 25,000 dream reports is drawn from a variety of sources and studies, capturing the memories of individuals aged from 7 to 74.
I’m sure there’s a lot of serious and not so serious fun to be had on this site, but for now I’ve just run a basic analysis to find the proportion of total dreams including the word ‘science’ at least once.
The results:
1. Of 25222 dreams, 86 mentioned ‘science’ (0.3%)
2. The group or individual with the highest proportion of dreams referencing ‘science’ was Bay Area Girls (4-6 graders). i.e. 13 of 234 dreams = 5.6%
3. The second highest proportion was reported by male Psychologist Melvin. i.e. 5 of 128 dreams = at 3.9%
Dream search box (source: dreambank.net)
I then ran three other words that came to mind with stuff of dreams potential, and got these results expressed as the percentage of dreams in the total sample mentioning the word once or more:
– War 31%
– Sex 3.7%
– Science 0.3%
– Climate <0.1%
So what does it all mean for science? And if dreams tell us what’s really on our minds (do they?) – what are we in for?
Well, with this as a starter, I’ll leave you and the tabloids to draw your own conclusions; I’m sure there are some great headlines to be extracted. But I would say that as a whole we appear not to be losing too much sleep over science, and the future of Silicon Valley looks a lot more assured than that of the planet as a whole.
For myself I can’t remember having had any dreams specifically about science; but I’m sure I must have; so from now on I’m going to make an effort to track them. And of course if you’d like to share any of your own sciencey dreams – feel free to add them to the comments – especially if they include science, war, sex, and climate combined ;-).
Other Info
Here’s the detail for the science search. For more information on the groups and individuals, and the potential to perform more detailed statistical analysis, visit dreambank.net.
And, credit where due; I (@physicus) originally learnt of dreambank.net from a tweet by @christianbok via @rowanNS.
One of nature’s more fascinating and charming aspects is displayed when completely different species interact in ways that are mutually beneficial; it’s called symbiosis.
We’ve all seen David Attenborough describe those little cleaner fish, that peck fungus off killer sharks; and the birds that pick fleas from gazelles in Africa.
But as I discovered one early UK morning in November, and as these photographs of fallow deer and magpies show, you don’t need to travel beyond suburban Surrey to see similar behaviour.
I’ve not had the time to go overboard researching this convenient pairing, but did find this from an edition of ‘The Condor’ published in 1998:
‘Ectoparasite removal was observed as the cause for Black-billed Magpies’ (Pica pica) pecking on fallow deer (Dama dama). It was also observed that deer that were sitting were preferred by the magpies over deer that were standing. The magpies also seemed to prefer adult males over adult females or calves. The ectoparasitic interaction may be benefiting birds because ectoparasites are one of their sources of food. However, its benefit to the fallow deer has yet to be investigated.’
So the magpies are in it for the munchy ectoparasites – can’t blame them; but what do the deer get out of the deal – I’m guessing a lot less itching?
And so much for the magpie’s preference for seated deer. What do you think?
Reference
Genov, Peter V., Gigantesco, Paola, Massei, Giovanna; Pub: Cooper Ornithological Society, in ‘The Condor’ 1998, ISSN: 0010-5422
The last thing I expected at a history talk with Stephen Fry was a discussion on the relative merits of rationalism and empiricism. But that’s what we got for part of the time at the Harper Collins Annual history Lecture at the Royal Institute of British Architects last month. And for some reason, the topic’s stuck in my head.
A rush to rationalism?
The difference between rationalism and empiricism essentially turns on the degree to which we draw on the evidence of our senses in creating knowledge.
Fry’s comments were a warning through illustration of over-dependence on apparently rational decisions. As the conversation moved to the fall of the Berlin Wall, Fry made the point that while it seemed rational to liberate Eastern Europe with the flourish, rapidity, and completeness now symbolised by the dismantling of the wall, that process also had unforeseen consequences in the form of unprecedented crime and corruption.
Fry likened it to the activation of a sleeping cancer one might find in a patient from Oliver Sacks’s book Awakenings. These negative developments had been kept in check only by the strictures of the former regime, and were now – in some quarters – the cause of discontent and a call for a return to a more certain past.
Stephen Fry in conversation with Lisa Jardine at RIBA (Photo: Sven Klinge)
It’s hard to know whether an empiricist approach would have predicted the unlooked for outcome, or whether the experience of Eastern Europe has informed China’s more recent and ongoing transformation. But when looked at in this way, the Chinese process, whereby economic liberation moves ahead of relaxation in political and social controls, might not be all bad. For while the West finds elements of the process distasteful, what greater chaos might be unleashed under a less managed regime?
Yet at an emotional level, attacks on rationality can grate, especially with scientists and technologists. I bristled when Fry likened over-zealous support for rationalism to belief in religion. Was this the same Stephen Fry whose debate trounced the Catholic Church, and who regularly shares platforms with the likes of Richard Dawkins? But rather than rejecting rationalism, I believe he made a valid point: that it is too easy to assume a rationalist approach in all situations – however complex – when sometimes the abstract premises from which we deduce knowledge for decision making are just not up to it.
A palette of reason
Moving on, but with an eye to Fry’s sentiments, there seem to be an awful lot of reasonable sounding words out there: like ‘rational’, ’empirical’, ‘evidence-based’, ‘logical’; and indeed – ‘reasonable’. Whether in the context of drugs policy, climate change, faith schools, or whatever; these words sit like so many pigments on a palette of reason, wielded by individuals and governments alike, to convince us – and themselves – that a particular course of action carries some special sanction. But why do the same words frequently lead to misunderstandings and angst?
It seems to be down to definition and interpretation. Boiling our list down to rationalism and empiricism (subsuming ‘evidence-based’ into empiricism and logic into rationalism) the dictionary definitions and learned philosophical commentaries leave plenty of scope for confusion.
‘the practice or principle of basing opinions and actions on reason and knowledge rather than on religious belief or emotional response’, and empiricism as
‘the theory that all knowledge is derived from experience and observation‘
which seems pretty clear. But the Oxford Pocket English Dictionary muddies the rational water by including philosophical and theological interpretations that flex the definition of rationalism to a form no scientist could agree with. It seems scientific rationalism is just one brand. I’ve really no idea what to make of the theological interpretation given as:
‘the practice of treating reason as the ultimate authority in religion’.
but it put me in mind of this quote from the current Pope, relayed in this interview by the Vatican astronomer Guy Consolmagno, and equally confusing to my concept of rationality:
“religion needs science to keep itself away from superstition“
No wonder there’s confusion
This all goes some way to explain why scientists find themselves at odds with the government on issues like drugs policy and the recent Nutt affair.
Professor David Nutt led a committee advising the British Government on drugs policy, until he was sacked for speaking publicly in a manner the Home Secretary judged inconsistent with his position. The sacking blew up into a huge debate about the role of scientific advisors and their advice, what they can say when, and the way scientific evidence is used in a politically cognisant, but surely still rational, decision making process.
Some of our reasonable words appeared in the popular press; such as ‘empirical‘ in this Daily Mail piece by A.N.Wilson:
‘The trouble with a ‘scientific’ argument, of course, is that it is not made in the real world, but in a laboratory by an unimaginative academic relying solely on empirical facts.’
Evan Lerner has argued the technical inaccuracy of this statement that leaves us nowhere to go. If empirical facts are no good, decision makers must be following a rationalist stance or some ‘third way’ unbeknown to philosophers. But I’d argue the politicians are just following a brand of rationalism that suits their purpose; it’s just not a scientific one. And when A.N.Wilson goes on to invoke the R-word:
‘Those who dare question scientists are demonised for their irrationality. Global warming may or may not be a certainty, but anyone who queries it has his sanity questioned. Cast doubt on these gods of certainty and you are accused of wanting to suppress free expression -…’
he’s right; anyone who doesn’t comply with the scientific definition of rationality is demonised. Personally I’d like the scientific definition to be universally accepted, but while there are powerful constituencies who benefit from and delight in wooliness defended as realism or flexibility (politicians, theologians, dictionary compilers), I can’t see it happening.
Likewise, the only kind of rationality under which a discussion on the virtues of faith schools makes sense is one that allows ethical and metaphysical propositions (e.g. is there a god). Moreover, we’re left with politicians working up a drugs policy using an ethics-based ‘political rationality’, and an education policy that recognises and values a ‘religious rationality’.
Unfortunately, the transparency being called for concerning when and under what circumstances this flexing of scientific rationalism happens, also threatens politicians with the anathema of exposing less visible agendas traditionally played close to the chest.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.