I began by testing if the physically based render program Luxrender can make a believable simulation of white light passing through a prism.
Unbiased render engines like Luxrender send out many virtual photons and calculate their paths according to physical laws, and as the ray-tracing algorithm includes colour dispersion, it should work.
Experimentum Crucis
Adding a second prism gives us Isaac Newton’s ‘Experimentum Crucis’: one of a series of experiments performed by Newton in 1666 and reported in a letter to the Royal Society in 1671 (1), showing how white light is composed of a range of colours separable by a prism.
Newton then demonstrated the colours were a property of the light, not the prism, by using a slit to isolate an individual colour from one prism, and passing it through a second where no further separation of colours occurs – the second prism just refracts the single colour to one side. Here is Newton’s own drawing of his two-prism experiment.
Virtual set-up and approximations
My distances and prism sizes are not accurate, but the simulation still works. Also, Newton used the sun as a light source: passed through a slit before the first prism or focused through a lens. By contrast, my source is a small rectangular surface radiating in all forward directions followed by a collimating tunnel.
If the real or simulated light source is too ill-defined or unfocused, the separation in the spectrum can look superficially reasonable, but actually comprise several fuzzy overlapping spectra. As a result, running without the collimator caused the green band to split into further colours. That said, it’s worth remembering that while Newton reported seeing seven colours, the actual spectrum is a continuum of wavelengths, so a single colour will in fact be made of a range of further dispersible shades – we just don’t discern it.
Results
Here is a close-up of the isolating slit and the green spectral ‘line’ deviated but not dispersed by the second prism. I’ve also in this picture turned out the background light used solely for dramatic effect in the first picture.
And here are wireframe pics of the layout (scene created in Poser and linked to Luxrender via Reality):
Other Observations
An interesting feature of this type of modelling is the need for a so-called Tone Mapping process. This requires the multiple wavelengths to which the ray-tracing maths is applied to simulate dispersion are translated into the red, blue, and green (RGB) that the computer monitor can display.
This sort of progam is limited as a virtual optical bench. Luxrender cannot, for example, calculate the quantum probability amplitudes necessary to simulate interference as seen in the double slit experiment.
“A squib is a type of firework, hence damp squib: something that fails ignominiously to satisfy expectations; an anti-climax.”
Oxford English Dictionary
The opportunities for non-scientists to do science have never been greater: it’s called Citizen Science.
Helping out the professionals can involve anything from counting ladybirds in your back yard, to looking for alien life, to classifying galaxies and discovering new planets, to monitoring the population dynamics of the Rose-Ringed Parakeet. Just take your pick from the Zooniverse Smörgåsbord.
But when was the first citizen science project? I’ve been thinking about it lately, and my starter-for-ten comes from some research I did last year about fireworks. There must be other examples, so please comment if you have any.
Not to be distracted by definitions (however interesting – see Openscientist), I’m taking citizen science to mean some sort of research or project where a scientist – or what passed for one at the time – appeals to the public to report observations, measurements, or such like.
My candidate project concerns Fellow of the Royal Society (FRS) Benjamin Robins, who in 1748 made a general appeal to the public to observe and report the height of rockets – ultimately with military and surveying purposes in mind – during a firework display.
Without email, podcasts, or Dara Ó Briain’s Science Club, Robins’s request appeared as an anonymous bulletin in the November 1748 issue of The Gentleman’s Magazine1 (in his excellent Fireworks: Pyrotechnic Arts and Sciences in European History2, Simon Werrett suggests Robins is the most likely author)
For if such as are curious and are from 15 to 50 miles distant from London, would carefully look out in all proper situations on the night when these fireworks are play’d off, we should then know the greatest distance to which rockets can possibly be seen; which if both the situation of the observer, and the evening be favourable, will not, I conceive, be less than 40 miles. And if ingenious gentlemen who are within 1,2 or 3 miles of the fireworks, would observe, as nicely as they can, the angle that the generality of the rockets shall make to the horizon, at their greatest height, this will determine the perpendicular ascent of those rockets to sufficient exactness.
The Gentleman’s Magazine1November 1748
Robins had made a name for himself in gunnery and ballistics, calculating for the first time how air resistance affects military projectiles3. Now he enthused over rockets for their
…very great use in geography, navigation, military affairs, and many other arts;1.
The light alone from a rocket was a useful signal in war; but Robins knew more was possible. Provided the rocket rises vertically to a known height, the observed angle between the horizon and the rocket at the top of its flight lets you calculate its distance. Before GPS and radio, this could tell you where someone was:
The map maker John Senex had already used the method for surveying4, but Robins needed more height and distance data to refine and calibrate the technique. But where would the rockets come from?
As it turned out, Robins’s timing was perfect. Bringing to an end a series of tortuous European wars, the recently signed Treaty of Aix-la-Chappelle was the latest cause for national, and therefore Royal, celebration. And George II planned to celebrate in style, with a sound and light spectacular involving the launch of thousands of firework rockets. The geo-politics of the day were about to lend Robins an unlikely and unwitting hand.
Held at Green Park, London, in April 1749, George’s display, famously accompanied by Handel’s Music for the Royal Fireworks, was huge. No less than 10650 rockets weighing up to 6 pounds each rose into the night sky from a 410 ft long ornate Doric temple or ‘firework machine’5 – 6000 of them reserved to go up together in the finale6.
Robins’ request for two types of data: angle measurements from those close in, and simple confirmations of visibility from those further out, came with instructions:
The observing the angle which a rocket, when highest, makes with the horizon, is not difficult. For if it be a star-light night, it is easy to mark the last position of the rocket among the stars: whence, if the time of the night be known, the altitude of the point of the heavens corresponding thereto, may be found on a celestial globe. Or if this method be thought too complex, the same thing may be done by keeping the eye at a fixed place, and then observing on the side of a distant building, some known mark, which the rocket appears to touch when highest; for the altitude of that mark may be examined next day by a quadrant; or, if a level line be carried from the place where the eye was fixed to the point perpendicularly under the mark, a triangle may be formed, whose base and perpendicular will be in the same proportion as the distance of the observer from the fireworks, is to the perpendicular ascent of the rocket.
The Gentleman’s Magazine1November 1748
Bearing in mind astronomy and triangulation are skills likely absent from most readers’ day jobs, this is quite an intimidating, albeit educational, set of instructions. So much for the procedure; how did the results pan out?
There were some issues on the night, including a large portion of the Doric temple unexpectedly catching fire during the show, and various eye witness accounts suggest the event was a little lack-lustre. But the rockets went up, and George’s spin-doctors took care of any negative PR.
The response to Robins’ experiment was more disappointing, with only one report appearing in the follow up edition of the Gentleman’s Magazine, and that from a Welshman 138 miles away near Carmarthen:
I had a clear prospect of several miles eastward where I waited with impatience till near 10 o’clock, and then saw two flashes of light, one a few minutes after the other, that rose east of me to the height of about 15 degrees above the visible horizon. I don’t pretend that I saw any body of fire, only a blaze of light, which neither descended like a meteor, nor expanded itself abroad like a lightning, but ascended and died. Clouds interrupted, that I could see no more.
Thomas Ap Cymra, Gentleman’s Magazine, May 17497
Let’s remind ourselves what 138 miles looks like:
So, how believable is Thomas Ap Cymra’s report?
At this distance, a line-of-sight view of the rocket at the top of its trajectory is out of the question, thanks to the curvature of the Earth – never mind the Brecon Beacon mountain range. But we shouldn’t write Thomas off just yet. 6000 rockets going off together would make a hell of a flash, and we know lightning from thunderstorms can be seen from many miles away. And in the First World War there were reports of flashes from the fighting in France being visible from London.
In his full letter, Thomas logically argues why his observations could not have been meteors or lightning. Off the technical topic, he then questions the suitability and cost of the event, saying how he struggles to rationalise the irony of using fireworks to celebrate a military cessation. The moaning somehow makes his observations more credible.
All the same, a single response with no elevation data must have been a disappointment to Robins. And just as well he’d taken the belt-and-braces precaution of making some of his own elevation measurements, with the help of a friend stationed 4000 yards away in Cheapside,
From these measurements, taken with a sextant with the starry background as reference, Robins was able to publish in the Philosophical Transactions of the Royal Society, that the highest Green Park rockets had risen to 8.75 degrees above the horizon, equivalent to a height of 615 yards8.
Robins made further tests after the Green Park display, trusting to friends and colleagues placed at various locations tens of miles from London – itself a non-trivial task without mobile phones – and using rockets of more consistent specification9
We have to hand it to Robins, that despite a poor public response, his was a valiant effort to stir up interest and participation using the latest communications media available to him.
We should also remember The Gentleman’s Magazine was the first publication of its type (est. 1721) and the first to reach anything like a wide audience – albeit one excluding women and the not so well-to-do. The concept of a publicly visible two-way conversation via a publication was itself recent, having first appeared in pseudo form in the fictional dialogue between characters in the Spectator Magazine (1711-12). So maybe it was just all too new.
These days, I suppose Robins might suggest participants send him a geo-mapped digital photograph of the rockets. Some would understand what they were doing – others wouldn’t – but the data would still be good. But that brings us back to asking exactly who counts as a citizen scientist, which is a whole new question, and probably a good place to stop.
References and further reading
1. ‘A Geometrical Use proposed for ‘the Fire-Works’, Gentleman’s Magazine, Vol 18 Nov. 1748, p.488.
2. Fireworks: Pyrotechnic Arts and Sciences in European History. Simon Werrett, University of Chicago Press, 2010.
3. New Principles of Gunnery, Benjamin Robins, London, J.Nourse, 1742
5. A description of the machine for the fireworks; with all its ornaments, and a detail of the manner in which they are to be exhibited in St.James Park, Thursday, April 27th, 1749, on account of the General Peace, signed at Aix-la-Chappelle, October 7, 1748. Published by His Majesty’s Board of Ordnance. By Gaetano Ruggieri and Gioseppe Sarti.
6. The Mirror of Literature, Amusement and Instruction. Vol 32, 1838, p.66
7. Fireworks Observed. Gentleman’s Magazine, Vol 19, May 1749, pp.217-18
8. Observations on the Height to Which Rockets Ascend; By Mr. Benjamin Robins F. R. S. Phil. Trans. 1749 46 491-496 131-133; doi:10.1098/rstl.1749.0025
9. An Account of Some Experiments, Made by Benjamin Robins Esq; F. R. S. Mr. Samuel Da Costa, and Several Other Gentlemen, in Order to Discover the Height to Which Rockets May Be Made to Ascend, and to What Distance Their Light May be Seen; by Mr. John Ellicott F. R. S. Phil. Trans. 1749 46 491-496 578-584; doi:10.1098/rstl.1749.0109
Modern revolvers have a mechanism that keeps them from firing accidentally if knocked or dropped. Before that, savvy owners learned to carry their weapon with an empty chamber under the hammer. Californian real-estate developer Clarence Austin was not among them.
Picture Austin, one May day in 1909, setting off on a peaceful fishing trip. He parks up his vehicle, ready to meet a connecting streetcar. Running late, he hurriedly unloads his gear, casually throwing a blanket roll to the sidewalk. As the roll strikes the ground, a forgotten pistol consealed in its folds discharges. The bullet rips through Austin’s knee, and lodges, somewhere, in his leg.
“I am shot!” Austin perceptively exclaims – according to the Los Angeles Herald1.
Bystanders rally and Austin is ambulanced home. A doctor arrives, and, with a strange electrical apparatus that emits invisible rays, locates and removes the offending slug. Austin Clarence will live to sell real-estate another day.
As luck would have it, Austin had picked the best possible neighbourhood west of the Rockies to shoot himself in – for his attending physician was Dr Adalbert Fenyes (1863-1937): M.D., neurologist, celebrated entomologist, all-round gentleman scientist, and – importantly for Austin – one of the very few early practitioners in medicinal X-rays. Fenyes lived in a city 10 miles northeast of Los Angeles, a place that Einstein once compared to nothing less than paradise: Pasadena.
Here in Pasadena it is like Paradise. Always sunshine and clear air, gardens with palms and pepper trees and friendly people who smile at one and ask for autographs.
Albert Einstein, 19312
I discovered Fenyes on a recent visit to the Pasadena Museum of History. Custodians of the Fenyes legacy, the museum is situated at the site of the former Fenyes Mansion at 170 North Orange Grove (now 470 West Walnut Street).
While not quite an A-Lister in the Einstein league, Adalbert, taken together with his accomplished artist and businesswoman wife Eva, give us a fascinating glimpse on a bygone age: a lost vignette of turn-of-the-century intellectual life in a city whose attraction for talented people, and especially scientists, persists. Fenyes also opens the door on two other Pasadena scientists I particularly admire: the astronomers George Ellery Hale, and Edwin Hubble: who, like the Fenyes’s, supported their city as well as their science.
Even the most conscientious scientists have to leave their laboratories and observatories sometime, and visiting their former homes and neighbourhoods – often remarkebly unchanged – helps fill that last 5% the biographies seem to miss. The Fenyes mansion is a case in point. You might recognise it from any number of Hollywood movies – most recently The Prestige: part of a tradition started with Eva Fenyes’s close association with the movie industry3. So too the bungalow at 707 South Oakland Avenue, where Albert and Elsa Einstein stayed when Albert visited Caltech in the 1930s.
Orange Grove Avenue has always been popular with the well to do, and not just film-stars; just down the road is the iconic Arts & Crafts Gamble House, once owned by David Gamble of Proctor and Gamble fame. Hale and Hubble also left their mark – as we shall see. But first up, what of Adalbert Fenyes….?
Gentleman Scientist
There are no direct British parallels to Fenyes – aristocrat son of a Hungarian Count, but he may be close to a Charles Darwin or John William Strutt – Baron Rayleigh (of Argon discovery and Rayleigh Scattering fame): gentlemen scientists with broad interests and the independent means to work to their own agendas.
Fenyes trained as a physician in Austria, and was doctoring in Egypt when he met American heiress Eva Scott Muse – while on her Grand Tour .
After a spell in Chicago, where Adelbert studied X-ray procedures, in 1896 the couple settled in Pasadena, moving to the new $20,000 mansion in 1907.
Multi-faceted Fenyes M.D. ran a physician’s office downtown – specialising in neurological problems – while Fenyes the entomologist wrote scholarly papers, built an insectorium in the mansion grounds, and travelled to collect specimens4 ; a two month trip to Mexico yielded no less than 10,000 beetles5. Fenyes’s beetle collection is now with the California Academy of Sciences in San Francisco.
Fenyes discovered several new genera and species within the order Coleoptera (beetles). Always the gentleman, here is one he named after his wife:
While Adalbert’s insect research appeared in learned journals, the bug-hunting trips became the stuff of society page gossip, alongside the movements of movie stars and business tycoons. Fenyes repaid the attention, albeit to the favoured few, with popular lantern slide talks on his beetle research – including samples – to Pasadena’s exclusive Twilight Club (all male) and Shakespeare Club (all female). The civicly framed “Insects and Their Value to the Community”(1904) 6 betrays Fenyes’ skill as a science communicator, tuning into his business-minded audience. Even insects had to pull their weight in those industrious times.
Röntgen Rays
Within a year of Wilhelm Röntgen’s 1895 discovery of X-rays, and Michael Pupin’s method of imaging developed the following year, medical applications started to appear. Fittingly for our story, one of Pupin’s early exposures, or skiagraphs, shows a hand riddled with self-inflicted buckshot7. In the case of Clarence Austin’s leg, Fenyes was able to see the location and orientation of the bullet, and identify cloth fragments carried into the wound. By replacing the photographic plate with a fluorescent screen it was possible to operate ‘live’, the surgeon’s skeletised hands and instruments visible hovering over the patient’s wound (Gillanders8 ). Portable equipment run off car batteries was in use by 18999.
A prominent researcher in the field, Fenyes led a session on ‘X-ray therapy’ at a 1903 meeting11 of the Southern California Electro-Medical Society in Los Angeles, alongside sessions on ‘Galvanism’ and ‘Static Therapy’. Fenyes studied the effects of X-rays on the kidneys and other organs, and for the treatment of non-malignant skin disease like acne and eczema 12 , personally escaping the worst of the radiation burns and illness that seriously injured or killed many contemporary practitioners. When he moved to Pasadena, he had one of the rare X-ray machines shipped to his home – possibly the equipment used on Austin.
If Pasadena had any single founder, it was George Ellery Hale
Kevin Starr in his history of California13.
Our next urbane utopian is Chicago born George Ellery Hale (1868-1938): best known – at least among astronomers – as the instigator, designer, and builder of the world’s greatest astronomical observatories and telescopes.
Inspired by his first sight of the Lick Observatory as a young man on his California honeymoon, Hale ‘made-it-so’ for the 40-inch Yerkes refractor in Wisconsin, the 60-inch and 100-inch reflecting telescopes on Mount Wilson, and the 200-inch ‘Hale’ reflector on Mount Palomar.
Possessed since childhood of a high-energy passion and interest in all things, Hale explored, studied, experimented, and built machines in his laboratory workshop: basically doing all the fun stuff kids are arguably over-protected from today (anyone whose father bought them a steam-driven lathe for Christmas, as Hale’s did, is bound to turn out right in my book).
As the calendar flipped into the twentieth century, 32 year old Hale, already an established solar astronomer with the invention of the spectroheliograph under his belt, was keen to progress research on stellar evolution started at the Yerkes Obervatory. Hale had in mind a series of newer, bigger, and more capable solar instruments, the siting of which, in terms of atmospheric conditions, would be critical. In 1903, his global scouting mission reached Pasadena.
At first, the test observations looked hopeless. From ground level, a shimmering heat from the baking dessert distorted the Sun’s image. But tests at the top of Mount Wilson, a 5700 foot peak in the San Gabriel Mountains overlooking the city, told a different story. Here, where extensive tree cover insulated the ground and muffled the disabling thermals, conditions were perfect. Mount Wilson commanded a World Class view of our nearest star14.
And so the love affair with Pasadena began, when in 1904 Hale took up the directorship of the Mount Wilson Solar Observatory. Dull, wintery, climates depressed Hale; Southern California would do just fine.
Hale’s contribution to astronomy is well known. Less well known, even I suspect among some Pasadenans – is that the city’s California Institute of Technology (Caltech), Huntington Library, Civic Center, and a host of other organisations, institutes, and clubs, only exist because of Hale’s energy and commitment.